The laws of thermodynamics the science that deals with energy and its transformation have wide applicability in several branches of engineering and science. The revised edition of this introductory text for undergraduate engineering courses covers the physical concepts of thermodynamics and demonstrates the underlying principles through practical situations. The traditional classical (macroscopic) approach is used in this text. Numerous solved examples and more than 550 unsolved problems (included as chapter-end exercises) will help the reader gain confidence for applying the principles of thermodynamics in real-life problems. Sufficient data needed for solving problems have been included in the appendices.

As the title implies, this book provides an introduction to thermodynamics for students on degree and HND courses in engineering. These courses are placing increased emphasis on business, design, management, and manufacture. As a consequence, the direct class-time for thermodynamics is being reduced and students are encouraged to self learn. This book has been written with this in mind. The text is brief and to the point, with a minimum of mathematical content. Each chapter defines a list of aims and concludes with a short summary. The summary provides an overview of the key words, phrases and equations introduced within the chapter. It is recognized that students see thermodynamics as a problem-solving activity and this is reflected by the emphasis on the modelling of situations. As a guide to problem solving, worked examples are included throughout the book. In addition, students are encouraged to work through the problems at the end of each chapter, for which outline solutions are provided. There is a certain timelessness about thermodynamics because the funda mentals do not change. However, there is currently some debate over which sign convention should apply to work entering, or leaving, a thermodynamic system. I have retained the traditional convention of work out of a system being positive. This fits in with the concept of a heat engine as a device that takes in heat and, as a result, produces positive work.

Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.

An Introduction to Thermodynamics and Statistical Physics

This textbook offers an advanced undergraduate or initial graduate level introduction to topics such as kinetic theory, equilibrium statistical mechanics and the theory of fluctuations from a modern perspective. The aim is to provide the reader with the necessary tools of probability theory and thermodynamics (especially the thermodynamic potentials) to enable subsequent study at advanced graduate level. At the same time, the book offers a bird's eye view on arguments that are often disregarded in the main curriculum courses. Further features include a focus on the interdisciplinary nature of the subject and in-depth discussion of alternative interpretations of the concept of entropy. While some familiarity with basic concepts of thermodynamics and probability theory is assumed, this does not extend beyond what is commonly obtained in basic undergraduate curriculum courses.

Solutions Manual for an Introduction to Thermodynamics

This manual contains the complete solution for all the 505 chapter-end problems in the textbook An Introduction to Thermodynamics, and will serve as a handy reference to teachers as well as students. The data presented in the form of tables and charts in the main textbook are made use of in this manual for solving the problems.

Thermodynamics and an Introduction to Thermostatistics

The only text to cover both thermodynamic and statistical mechanics--allowing students to fully master thermodynamics at the macroscopic level. Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory.

Calculations approach: Strong mathematical rigor has been applied, and a complementary physical treatment given, to make students strong in the applied aspects of thermodynamics Problem solving presentation: 195 solved examples and 269 unsolved problems have been given. Hints to difficult problems have been give too. Concept checking Review Questions have been given at the end of every chapter Coverage on thermodynamic discussion of eutectics, solid solutions and phase separation

An Introduction to Statistical Mechanics and Thermodynamics

An Introduction to Statistical Mechanics and Thermodynamics returns with a second edition which includes new chapters, further explorations, and updated information into the study of statistical mechanics and thermal dynamics. The first part of the book derives the entropy of the classical ideal gas, using only classical statistical mechanics and an analysis of multiple systems first suggested by Boltzmann. The properties of the entropy are then expressed as "postulates" of thermodynamics in the second part of the book. From these postulates, the formal structure of thermodynamics is developed. The third part of the book introduces the canonical and grand canonical ensembles, which are shown to facilitate calculations for many model systems. An explanation of irreversible phenomena that is consistent with time-reversal invariance in a closed system is presented. The fourth part of the book is devoted to quantum statistical mechanics, including black-body radiation, the harmonic solid, Bose-Einstein and Fermi-Dirac statistics, and an introduction to band theory, including metals, insulators, and semiconductors. The final chapter gives a brief introduction to the theory of phase transitions. Throughout the book, there is a strong emphasis on computational methods to make abstract concepts more concrete.

An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science

This book is based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science is about the application of thermodynamics and kinetics to solve problems within Materials Science. Emphasis is to provide a physical understanding of the phenomenon under discussion, with the mathematics presented as a guide. The problems are used to provide practice in quantitative application of principles, and also to give examples of applications of the general subject matter to problems having current interest and to emphasize the important physical concepts. End of chapter problems are included, as are references, and bibliography to reinforce the text. This book provides students with the theory and mathematics to understand the important physical understanding of phenomena. Based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science Provides students with the theory and mathematics to understand the important physical understanding of phenomena Includes end of chapter problems, references, and bibliography to reinforce the text

The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course