Advances in Hybrid Conducting Polymer Technology

Advances in Hybrid Conducting Polymer Technology

Advances in Hybrid Conducting Polymer Technology

This book presents synthesis methods, characterization techniques, properties and applications of hybrid conducting polymers. Special emphasis is given to the applications of hybrid conductive polymers, with chapters ranging from electronic devices, environmental remediation, and sensors, to medical applications.

Conducting Polymer Hybrids

Conducting Polymer Hybrids

Conducting Polymer Hybrids

This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. “Conducting Polymer Hybrids” is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.

Electrically Conductive Polymers and Polymer Composites

Electrically Conductive Polymers and Polymer Composites

Electrically Conductive Polymers and Polymer Composites

A comprehensive and up-to-date overview of the latest research trends in conductive polymers and polymer hybrids, summarizing recent achievements. The book begins by introducing conductive polymer materials and their classification, while subsequent chapters discuss the various syntheses, resulting properties and up-scaling as well as the important applications in biomedical and biotechnological fields, including biosensors and biodevices. The whole is rounded off by a look at future technological advances. The result is a well-structured, essential reference for beginners as well as experienced researchers.

Advances in Hybrid Conducting Polymer Technology

Advances in Hybrid Conducting Polymer Technology

Advances in Hybrid Conducting Polymer Technology

This book presents synthesis methods, characterization techniques, properties and applications of hybrid conducting polymers. Special emphasis is given to the applications of hybrid conductive polymers, with chapters ranging from electronic devices, environmental remediation, and sensors, to medical applications.

Advances in Conducting Polymers Research

Advances in Conducting Polymers Research

Advances in Conducting Polymers Research

Conducting polymers (CPs) such as polyaniline (PANI), polypyrrole (PPY), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(3-hexylthiophene) (P3HT), have been recognized as promising organic semiconductors due to their controllable chemical/electrochemical properties, light weight, low cost, good biocompatibility, facile processability, and adjustable electrical conductivities. This book presents current research in the field of polymers. Topics discussed include resonance raman of polyanilines nanofibers; conducting polymer micro-/nano- structures via template-free method; charge transfer and electrochemical reactions at electrodes modified with pristine and metal-containing films of conducting polymers; and conducting polymer-functionalized carbon nanotubes hybrid nanostructures based bioanalytical sensors.

Hole Transfer in CdSe Quantum Dot

Hole Transfer in CdSe Quantum Dot

Hole Transfer in CdSe Quantum Dot

This thesis investigates the hole transfer in p-type poly[2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) pendant polymer - quantum dot hybrid system in order to establish the potential application in photovoltaic devices. Laser flash photolysis (FP) combined with spectroelectrochemistry (SEC) demonstrated that photogenerated holes on the quantum dots transfer rapidly to the MEH-PPV pendant polymer. The results show that QD-polymer systems can form the basis for highly efficient charge separation in photovoltaic devices.

Conducting Polymer Based Nanocomposites

Conducting Polymer Based Nanocomposites

Conducting Polymer Based Nanocomposites

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Conducting Polymers with Micro or Nanometer Structure

Conducting Polymers with Micro or Nanometer Structure

Conducting Polymers with Micro or Nanometer Structure

Conducting Polymers with Micro or Nanometer Structure describes a topic discovered by three winners of the Nobel Prize in Chemistry in 2000: Alan J. Heeger, University of California at Santa Barbara, Alan G. MacDiarmid at the University of Pennsylvania, and Hideki Shirakawa at the University of Tsukuba. Since then, the unique properties of conducting polymers have led to promising applications in functional materials and technologies. The book first briefly summarizes the main concepts of conducting polymers before introducing micro/nanostructured conducting polymers dealing with their synthesis, structural characterizations, formation mechanisms, physical and chemical properties, and potential applications in nanomaterials and nanotechnology. The book is intended for researchers in the related fields of chemistry, physics, materials, nanomaterials and nanodevices. Meixiang Wan is a professor at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.