Dayside and Polar Cap Aurora

Dayside and Polar Cap Aurora

Dayside and Polar Cap Aurora

The auroral emissions in the upper atmosphere of the polar regions of the Earth are evidence of the capture of energetic particles from the Sun, streaming by the Earth as the solar wind. These auroral emissions, then, are a window to outer space, and can provide us with valuable information about electrodynamic coupling processes between the solar wind and the Earth's ionosphere and upper atmosphere. Studying the physics of these phenomena extends our understanding of our plasma universe. Ground-based remote-sensing techniques, able to monitor continuously the variations in the signatures of aurorae, in combination with in-situ satellite and rocket measurements, promise to advance dramatically our understanding of the physical processes taking place at the interface of the atmospheres of the Earth and the Sun. Decoding their complexity brings us closer to reliable prediction of communication environments, especially at high latitudes. This understanding, in turn, will help us resolve problems of communication and navigation across polar regions.

Dayside Magnetosphere Interactions

Dayside Magnetosphere Interactions

Dayside Magnetosphere Interactions

Exploring the processes and phenomena of Earth’s dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Solar terrestrial Energy Program

Solar terrestrial Energy Program

Solar terrestrial Energy Program


Biennial Report

Biennial Report

Biennial Report