Diffuse Radio Foregrounds

Diffuse Radio Foregrounds

Diffuse Radio Foregrounds

This extensive thesis work covers several topics, including intensity and polarization, focusing on a new polarization bias reduction method. Vidal studied data from the WMAP satellite, which is low signal-to-noise and as such has to be corrected for polarization bias. He presents a new method for correcting the data, based on knowledge of the underlying angle of polarization. Using this novel method, he sets upper limits for the polarization fraction of regions known to emit significant amounts of spinning dust emissions. He also studies the large-scale loops and filaments that dominate the synchrotron sky. The dominant features are investigated, including identification of several new features. For the North Polar Spur, a model of an expanding shell in the vicinity of the Sun is tested, which appears to fit the data. Implications for CMB polarization surveys are also discussed. In addition, Vidal presents interferometric observations of the dark cloud LDN 1780 at 31 GHz and shows that the spinning dust hypothesis can explain the radio properties observed.

Microwave Foregrounds

Microwave Foregrounds

Microwave Foregrounds


High Energy Astrophysics

High Energy Astrophysics

High Energy Astrophysics

Providing students with an in-depth account of the astrophysics of high energy phenomena in the Universe, the third edition of this well-established textbook is ideal for advanced undergraduate and beginning graduate courses in high energy astrophysics. Building on the concepts and techniques taught in standard undergraduate courses, this textbook provides the astronomical and astrophysical background for students to explore more advanced topics. Special emphasis is given to the underlying physical principles of high energy astrophysics, helping students understand the essential physics. Now consolidated into a single-volume treatment, the third edition has been completely rewritten. It covers the most recent discoveries in areas such as gamma-ray bursts, ultra-high energy cosmic rays and ultra-high energy gamma rays. The topics have been rearranged and streamlined to make them more applicable to a wide range of different astrophysical problems.

MAXIMA

MAXIMA

MAXIMA


The First Galaxies

The First Galaxies

The First Galaxies

New observations of the period between the cosmic recombination and the end of reionization are posing intriguing questions about where the first generations of stars were formed, how the first galaxies were assembled, whether these galaxies have low redshift counterparts, and what role the early galaxies played in the reionization process. Combining the new observational data with theoretical models can shed new light on open issues regarding the star formation process, its role in the reionization of the Universe, and the metal enrichment in galaxies at those early epochs. This volume brings together leading experts in the field to discuss our current level of understanding and what may come in the near future as our observational as well as theoretical tools improve. The book confronts the theory of how the first stars, black holes, and galaxies formed with current and planned observations. This synthesis is very timely, just ahead of the establishment of major new facilities, such as the James Webb Space Telescope (JWST), a next-generation, millimeter/sub-millimeter observatory in the Atacama desert (ALMA), and ground-based Extremely Large Telescopes (ELT). Together, they will revolutionize the study of the most distant objects in the Universe. This volume is aimed at beginning graduate students but can also serve as a reference work for active researchers in the field. Apart from presenting the fundamental concepts involved, it also provides an introduction to the methods and techniques used. The book will also be useful to anyone with an astrophysical background who needs an effective starting point for learning about the first stars and galaxies.