Material Computation

Material Computation

Material Computation

The production of architecture, both intellectually and physically, is on the brink of a fundamental change. Computational design enables architects to integrate ever more multifaceted and complex design information, while the industrial logics of conventional building construction are eroding rapidly in a context of increasingly ubiquitous computer-controlled manufacturing and fabrication. A novel convergence of computation and materialisation is about to emerge, bringing the virtual process of design and the physical realisation of architecture much closer together, more so than ever before. Computation provides a powerful agency for both informing the design process through specific material behaviour and characteristics, and in turn informing the organisation of matter and material across multiple scales based on feedback from the environment. Computational design and integrated materialisation processes allow for uncovering the inherent morphogenetic potential of materials and thus are opening up a largely uncharted field of possibilities for the way the built environment in the 21st century is conceived and produced. In order to effectively introduce and outline the enabling power of computational design along with its inherent relationship to a biological paradigm, this publication looks at formation and materialisation in nature, integrative computational design, and engineering and manufacturing integration. Architectural contributors include: Cristiano Cecatto, Neri Oxman, Skylar Tibbits and Michael Weinstock. A scientific perspective by Philip Ball and J Scott Turner. Features: Buro Happold's SMART group, DiniTech, Foster + Partners' Specialist Modelling Group, the Freeform Construction group and Stuttgart University's Institute for Computational Design.

From Pattern Formation to Material Computation

From Pattern Formation to Material Computation

From Pattern Formation to Material Computation

This book addresses topics of mobile multi-agent systems, pattern formation, biological modelling, artificial life, unconventional computation, and robotics. The behaviour of a simple organism which is capable of remarkable biological and computational feats that seem to transcend its simple component parts is examined and modelled. In this book the following question is asked: How can something as simple as Physarum polycephalum - a giant amoeboid single-celled organism which does not possess any neural tissue, fixed skeleton or organised musculature - can approximate complex computational behaviour during its foraging, growth and adaptation of its amorphous body plan, and with such limited resources? To answer this question the same apparent limitations as faced by the organism are applied: using only simple components with local interactions. A synthesis approach is adopted and a mobile multi-agent system with very simple individual behaviours is employed. It is shown their interactions yield emergent behaviour showing complex self-organised pattern formation with material-like evolution. The presented model reproduces the biological behaviour of Physarum; the formation, growth and minimisation of transport networks. In its conclusion the book moves beyond Physarum and provides results of scoping experiments approximating other complex systems using the multi-agent approach. The results of this book demonstrate the power and range of harnessing emergent phenomena arising in simple multi-agent systems for biological modelling, computation and soft-robotics applications. It methodically describes the necessary components and their interactions, showing how deceptively simple components can create powerful mechanisms, aided by abundant illustrations, supplementary recordings and interactive models. It will be of interest to those in biological sciences, physics, computer science and robotics who wish to understand how simple components can result in complex and useful behaviours and who wish explore the potential of guided pattern formation themselves.

Material based Design Computation

Material based Design Computation

Material based Design Computation

The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in geometric-driven form generation. Such prioritization of form over material was carried into the development and design logic of CAD. Today, under the imperatives and growing recognition of the failures and environmental liabilities of this approach, modern design culture is experiencing a shift to material aware design. Inspired by Nature's strategies where form generation is driven by maximal performance with minimal resources through local material property variation, the research reviews, proposes and develops models and processes for a material-based approach in computationally enabled form-generation. Material-based Design Computation is developed and proposed as a set of computational strategies supporting the integration of form, material and structure by incorporating physical form-finding strategies with digital analysis and fabrication. In this approach, material precedes shape, and it is the structuring of material properties as a function of structural and environmental performance that generates design form. The thesis proposes a unique approach to computationally-enabled form-finding procedures, and experimentally investigates how such processes contribute to novel ways of creating, distributing and depositing material forms. Variable Property Design is investigated as a theoretical and technical framework by which to model, analyze and fabricate objects with graduated properties designed to correspond to multiple and continuously varied functional constraints. The following methods were developed as the enabling mechanisms of Material Computation: Tiling Behavior & Digital Anisotropy, Finite Element Synthesis, and Material Pixels. In order to implement this approach as a fabrication process, a novel fabrication technology, termed Variable Property Rapid Prototyping has been developed, designed and patented. Among the potential contributions is the achievement of a high degree of customization through material heterogeneity as compared to conventional design of components and assemblies. Experimental designs employing suggested theoretical and technical frameworks, methods and techniques are presented, discussed and demonstrated. They support product customization, rapid augmentation and variable property fabrication. Developed as approximations of natural formation processes, these design experiments demonstrate the contribution and the potential future of a new design and research field.

Material Synthesis

Material Synthesis

Material Synthesis

Material Synthesis: Fusing the Physical and the Computational Guest-edited by Achim Menges A new understanding of the material in architecture is fast emerging. Designers are no longer conceiving of the digital realm as separate from the physical world. Instead computation is being regarded as the key interface for material exploration and vice versa. This represents a significant perceptual shift in which the materiality of architecture is no longer seen to be a fixed property and passive receptor of form, but is transformed into an active generator of design and an adaptive agent of architectural performance. In stark contrast to previous linear and mechanistic modes of fabrication and construction, materialisation is now beginning to coexist with design as explorative robotic processes. This represents a radical departure from both the trite modernist emphasis on 'truth to materials' and the dismissal of materials by the previous generation of digital architects. The issue features designers, researchers and thinkers that are at the forefront of exploring new modes of material enquiry and its deep interrelationship with technology, biology and culture. Through their work, which unfolds from multifaceted alliances between the fields of design, engineering and natural sciences, it seeks to trace the emergence of a novel material culture in architecture. Architectural and engineering contributors include: Sean Ahlquist, Martin Bechthold, Philippe Block, Karola Dierichs, Jan Knippers, Achim Menges, Neri Oxman, Steffen Reichert and Tobias Schwinn. Scientific and philosophical perspectives provided by: Mario Carpo, Manuel De Landa, Neil Gershenfeld and Thomas Speck. Features the design research of: Harvard's Material Processes and Systems Group, MIT's Mediated Matter Group and Stuttgart University's Institute for Computational Design.

Computational Materials Science

Computational Materials Science

Computational Materials Science

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.

Introduction to Computational Materials Science

Introduction to Computational Materials Science

Introduction to Computational Materials Science

Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behavior. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modeling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.