Wind Power Based Isolated Energy Systems

Wind Power Based Isolated Energy Systems

Wind Power Based Isolated Energy Systems

This book offers methods to improve energy access and support social and economic development through the appropriate and reliable design of isolated wind energy systems. The findings reported on wind based isolated power generation show that the proper match of turbine diameter and generator rating is vital, and is governed by the site wind resource and the load profile to be served. The methodology for sizing and selecting appropriate system parameters, taking into account the resource uncertainty, is demonstrated throughout the chapters of this monograph. Readers will discover information on the methodologies for modelling, design and optimization of the systems in terms of safety, functionality, longevity, and practicality. Details are provided on the design space of wind-battery systems, multiple wind generator systems, and wind-PV-battery hybrids to cover all the bases of isolated wind energy systems. This monograph aims to serve as a guide to system developers, manufacturers, and financing institutions on the design aspects of isolated wind energy systems.

Isolated Wind Power Supply System Using Double fed Induction Generator for Remote Areas

Isolated Wind Power Supply System Using Double fed Induction Generator for Remote Areas

Isolated Wind Power Supply System Using Double fed Induction Generator for Remote Areas

Highlights: A new isolated/remote area wind power/energy supply is presented. Double-fed Induction Generator is used in the supply system. Proposed supply is capable of supplying balanced, unbalanced & non-linear loads. New and very simple control method for rotor-front converter is proposed. An improved control technique for load/stator-front converter is presented. Abstract: This paper examines the application of the Double-fed Induction Generator for an isolated wind power system to supply the remote area. The isolated wind energy system using Double-fed Induction Generator is capable of supplying different loads such as balanced, unbalanced and nonlinear loads. The isolated wind energy supply is designed by using wound rotor induction generator and partial scale back to back connected voltage source converters at rotor side. The voltage source converters are called rotor-front voltage source converter and load/stator-front voltage source converter having the common capacitive direct current link. The presented study investigates the application stator/load side converter for load harmonics mitigation in isolated Double-fed Induction Generator based Wind Power Supply System. The shunt active power filter function is added in the convention control scheme of the load/stator-front voltage source converter to improve load harmonics. The control scheme proposed for stator/load side converter is based on the instantaneous active and reactive component of the load current method. Also a new and simple technique for rotor side converter is presented to regulate Voltage and Frequency at stator/load terminals. Different possible case studies are presented to show the effectiveness of both techniques proposed. Simulation results obtained from a 2 MVA Double-fed Induction Generator based wind power system, prototype in MATLab/Simulink, are given and discussed in this paper.

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018

This book presents a collection of the latest studies on and applications for the sustainable development of urban energy systems. Based on the 20th International Scientific Conference on Energy Management of Municipal Facilities and Sustainable Energy Technologies, held in Voronezh and Samara, Russia from 10 to 13 December 2018, it addresses a range of aspects including energy modelling, materials and applications in buildings; heating, ventilation and air conditioning systems; renewable energy technologies (photovoltaic, biomass, and wind energy); electrical energy storage; energy management; and life cycle assessment in urban systems and transportation. The book is intended for a broad readership: from policymakers tasked with evaluating and promoting key enabling technologies, efficiency policies and sustainable energy practices, to researchers and engineers involved in the design and analysis of complex systems.

Wind Power in Power Systems

Wind Power in Power Systems

Wind Power in Power Systems

The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.

Annual Progress Report

Annual Progress Report

Annual Progress Report


Synerjy

Synerjy

Synerjy


Small Signal Analysis of Isolated Hybrid Power Systems

Small Signal Analysis of Isolated Hybrid Power Systems

Small Signal Analysis of Isolated Hybrid Power Systems

Small Signal Analysis of Isolated Hybrid Power Systems: Reactive Power and Frequency Control Analysis discusses automatic reactive power control of autonomous hybrid power system modelling based on power equations. The modelling can be easily extendable to an autonomous hybrid power system having multi machines system. To test the proposed reactive power control system, state space models of wind-diesel, wind-multi-diesel, multi-wind-diesel, and wind-diesel-micro-hydro using the three different types of SVC models have been developed on the basis of small signal analysis. Simulation studies have been carried out on different examples of hybrid power systems for deterministic and realistic disturbances in load and/or input wind power. The book discusses optimum gain settings of the controllers for step disturbances in input wind and/or in reactive power load and observations obtained from the responses of the system considered under optimum gain settings. ANN models have been developed for different autonomous hybrid power system configurations for tuning the proportional-integral controller of SVC for optimum performance.